- Operating Systems Basics
- Operating System (OS) Home
- Operating System Basics
- What is an Operating System
- History of Operating System
- Mainframe Operating System
- Server Operating System
- Multiprocessor Operating System
- Personal Computer OS
- Real-Time Operating System
- Embedded Operating System
- Smart Card Operating System
- OS Processors
- OS Memory
- OS System Calls
- Operating System Structure
- OS Processes and Threads
- OS Processes
- OS Process Model
- OS Process Creation
- OS Process Termination
- OS Process Hierarchies
- OS Process States
- OS Process Implementation
- OS Threads
- OS Thread Model
- OS Thread Implementation
- OS Pop-up Threads
- OS Interprocess Communication
- OS Scheduling
- OS Thread Scheduling
- OS Deadlocks
- OS Deadlocks
- OS Deadlock Resources
- OS Deadlock Conditions
- OS Deadlock Modelling
- OS Deadlock Detection
- OS Deadlock Recovery
- OS Deadlock Avoidance
- OS Deadlock Prevention
- OS Two-Phase Locking
- OS Memory Management
- OS Memory Management
- OS Monoprogramming
- OS Multiprogramming
- OS Relocation and Protection
- Memory Management with Bitmap
- Memory Management with Linked List
- OS Virtual Memory
- OS Page Replacement Algorithms
- OS Local vs Global Allocation Policie
- OS Load Control
- OS Page Size
- OS Separate Instruction & Data Space
- OS Shared Pages
- OS Cleaning Policies
- OS Virtual Memory Interface
- OS Implementation Issues
- OS Involvement with Paging
- OS Page Fault Handling
- OS Instruction Backup
- OS Locking Pages in Memory
- OS Backing Store
- OS Separation of Policy & Mechanism
- OS Segmentation
- Operating System Input/Output
- Operating System Input/Output
- OS Input/Output Devices
- OS Device Controllers
- OS Memory-Mapped Input/Output
- OS Direct Memory Access DMA
- OS Input/Output Software Goals
- OS Programmed Input/Output
- OS Interrupt-Driven Input/Output
- OS Input/Output using DMA
- OS Input/Output Software Layers
- OS Disks
- OS Disk Hardware
- OS Disk Formatting
- OS Stable Storage
- OS Clocks
- OS Character-Oriented Terminals
- OS RS-232 Terminal Hardware
- OS Graphical User Interfaces
- OS Network Terminals
- OS Power Management
- OS File Systems
- OS Files
- OS File Naming
- OS File Structure
- OS File Types
- OS File Access
- OS File Attributes
- OS File Operations
- OS Memory-Mapped Files
- OS Directories
- OS Single-Level Directory System
- OS Two-Level Directory System
- OS Hierarchical Directory System
- OS Path Names
- OS Directory Operations
- OS File System Implementation
- OS File System Layout
- OS Disk Space Management
- Multimedia Operating System
- Multimedia Operating System
- OS Multimedia Files
- OS Audio Encoding
- OS Video Encoding
- OS Video Compression
- OS Multimedia Process Scheduling
- OS Multimedia File System Paradigm
- OS File Placement
- OS Caching
- OS Disk Scheduling
- OS Multiple Processor System
- OS Multiprocessors
- OS Multiprocessor Hardware
- OS Multiprocessor Synchronization
- OS Multiprocessor Scheduling
- OS Multicomputers
- OS Multicomputer Hardware
- Low-Level Communication Software
- User-Level Communication Software
- OS Remote Procedure Call
- OS Distributed Shared Memory
- OS Multicomputer Scheduling
- OS Load Balancing
- OS Distributed System
- OS Network Hardware
- OS Network Services and Protocols
- OS Document-Based Middleware
- OS File System-Based Middleware
- OS Shared Object-Based Middleware
- Operating System Security
- Operating System Security
- OS Threats
- OS Intruders
- OS Accidental Data Loss
- Basics of Cryptography
- Secret-Key Cryptography
- Public-Key Cryptography
- OS Digital Signatures
- OS User Authentication
- OS Trojan Horses
- OS Login Spoofing
- OS Logic Bombs
- OS Trap Doors
- OS Viruses
- OS AntiViruses
- OS Internet Worms
- Give Online Test
- All Test List
- Operating System Test
OS Page Fault Handling
When page fault occurs, then there are the following sequence of events happens:
- The computer hardware traps to kernel saving the program counter on stack.
- An assembly code routine is started just to save the general registers and some volatile information to keep the OS from destroying it.
- The OS discovers that the page fault has occurred, and it tries to find that which virtual page is needed.
- When virtual address that caused the page fault is known, then system simply checks to see if the address is valid or not and protection consistent with access.
- In case, if selected page frame is dirty, then that page is scheduled for transfer to the disk, and a context switch takes place, suspending the faulting process and letting other to run until the disk transfer has completed. In a event, page frame is marked as busy just to prevent it from being used for other purpose.
- As soon as page frame is clean, then the OS looks up the disk address where the needed page is, an scheduler a disk operation just to bring it in.
- When disk interrupt indicates that the page has arrived, then the page tables are updated just to reflect its position, and page frame is marked as being in the normal state.
- Now the page faulting instruction is just backed up to state it had when it began and the program counter is reset to the point to that instruction.
- The page faulting process is scheduled, and the OS returns to assembly language routine that called it.
- Now this routine reloads the registers and other state information and then returns to the user space just to continue the execution, as if no any fault had occurred.
« Previous Tutorial Next Tutorial »
Like/Share Us on Facebook 😋