- Operating Systems Basics
- Operating System (OS) Home
- Operating System Basics
- What is an Operating System
- History of Operating System
- Mainframe Operating System
- Server Operating System
- Multiprocessor Operating System
- Personal Computer OS
- Real-Time Operating System
- Embedded Operating System
- Smart Card Operating System
- OS Processors
- OS Memory
- OS System Calls
- Operating System Structure
- OS Processes and Threads
- OS Processes
- OS Process Model
- OS Process Creation
- OS Process Termination
- OS Process Hierarchies
- OS Process States
- OS Process Implementation
- OS Threads
- OS Thread Model
- OS Thread Implementation
- OS Pop-up Threads
- OS Interprocess Communication
- OS Scheduling
- OS Thread Scheduling
- OS Deadlocks
- OS Deadlocks
- OS Deadlock Resources
- OS Deadlock Conditions
- OS Deadlock Modelling
- OS Deadlock Detection
- OS Deadlock Recovery
- OS Deadlock Avoidance
- OS Deadlock Prevention
- OS Two-Phase Locking
- OS Memory Management
- OS Memory Management
- OS Monoprogramming
- OS Multiprogramming
- OS Relocation and Protection
- Memory Management with Bitmap
- Memory Management with Linked List
- OS Virtual Memory
- OS Page Replacement Algorithms
- OS Local vs Global Allocation Policie
- OS Load Control
- OS Page Size
- OS Separate Instruction & Data Space
- OS Shared Pages
- OS Cleaning Policies
- OS Virtual Memory Interface
- OS Implementation Issues
- OS Involvement with Paging
- OS Page Fault Handling
- OS Instruction Backup
- OS Locking Pages in Memory
- OS Backing Store
- OS Separation of Policy & Mechanism
- OS Segmentation
- Operating System Input/Output
- Operating System Input/Output
- OS Input/Output Devices
- OS Device Controllers
- OS Memory-Mapped Input/Output
- OS Direct Memory Access DMA
- OS Input/Output Software Goals
- OS Programmed Input/Output
- OS Interrupt-Driven Input/Output
- OS Input/Output using DMA
- OS Input/Output Software Layers
- OS Disks
- OS Disk Hardware
- OS Disk Formatting
- OS Stable Storage
- OS Clocks
- OS Character-Oriented Terminals
- OS RS-232 Terminal Hardware
- OS Graphical User Interfaces
- OS Network Terminals
- OS Power Management
- OS File Systems
- OS Files
- OS File Naming
- OS File Structure
- OS File Types
- OS File Access
- OS File Attributes
- OS File Operations
- OS Memory-Mapped Files
- OS Directories
- OS Single-Level Directory System
- OS Two-Level Directory System
- OS Hierarchical Directory System
- OS Path Names
- OS Directory Operations
- OS File System Implementation
- OS File System Layout
- OS Disk Space Management
- Multimedia Operating System
- Multimedia Operating System
- OS Multimedia Files
- OS Audio Encoding
- OS Video Encoding
- OS Video Compression
- OS Multimedia Process Scheduling
- OS Multimedia File System Paradigm
- OS File Placement
- OS Caching
- OS Disk Scheduling
- OS Multiple Processor System
- OS Multiprocessors
- OS Multiprocessor Hardware
- OS Multiprocessor Synchronization
- OS Multiprocessor Scheduling
- OS Multicomputers
- OS Multicomputer Hardware
- Low-Level Communication Software
- User-Level Communication Software
- OS Remote Procedure Call
- OS Distributed Shared Memory
- OS Multicomputer Scheduling
- OS Load Balancing
- OS Distributed System
- OS Network Hardware
- OS Network Services and Protocols
- OS Document-Based Middleware
- OS File System-Based Middleware
- OS Shared Object-Based Middleware
- Operating System Security
- Operating System Security
- OS Threats
- OS Intruders
- OS Accidental Data Loss
- Basics of Cryptography
- Secret-Key Cryptography
- Public-Key Cryptography
- OS Digital Signatures
- OS User Authentication
- OS Trojan Horses
- OS Login Spoofing
- OS Logic Bombs
- OS Trap Doors
- OS Viruses
- OS AntiViruses
- OS Internet Worms
- Give Online Test
- All Test List
- Operating System Test
OS File System Layout
Basically, file systems are stored on the disks.
Almost all disks can be divided up into multiple partitions with independent file systems on each partition.
Here, in the partition of the disk, Sector 0 is called as Master Boot Record (MBR), is used to boot the computer system.
The Master Boot Record's end contains the partition table.
That partition table gives the starting and ending addresses of each partition of the disk.
From those partitions in the table, one is marked as active. So that, whenever the computer system is booted up, the BIOS reads in and executes the Master Boot Record.
The very first thing that the master boot record program does is, locate the active partition, read in its first block, that is called as the boot block and execute it.
Now the program present inside the boot block loads the OS that contained in that partition.
For the purpose of uniformity, each and every partition starts with a boot block, even if it doesn't contain a bootable OS.
« Previous Tutorial Next Tutorial »