- Operating Systems Basics
- Operating System (OS) Home
- Operating System Basics
- What is an Operating System
- History of Operating System
- Mainframe Operating System
- Server Operating System
- Multiprocessor Operating System
- Personal Computer OS
- Real-Time Operating System
- Embedded Operating System
- Smart Card Operating System
- OS Processors
- OS Memory
- OS System Calls
- Operating System Structure
- OS Processes and Threads
- OS Processes
- OS Process Model
- OS Process Creation
- OS Process Termination
- OS Process Hierarchies
- OS Process States
- OS Process Implementation
- OS Threads
- OS Thread Model
- OS Thread Implementation
- OS Pop-up Threads
- OS Interprocess Communication
- OS Scheduling
- OS Thread Scheduling
- OS Deadlocks
- OS Deadlocks
- OS Deadlock Resources
- OS Deadlock Conditions
- OS Deadlock Modelling
- OS Deadlock Detection
- OS Deadlock Recovery
- OS Deadlock Avoidance
- OS Deadlock Prevention
- OS Two-Phase Locking
- OS Memory Management
- OS Memory Management
- OS Monoprogramming
- OS Multiprogramming
- OS Relocation and Protection
- Memory Management with Bitmap
- Memory Management with Linked List
- OS Virtual Memory
- OS Page Replacement Algorithms
- OS Local vs Global Allocation Policie
- OS Load Control
- OS Page Size
- OS Separate Instruction & Data Space
- OS Shared Pages
- OS Cleaning Policies
- OS Virtual Memory Interface
- OS Implementation Issues
- OS Involvement with Paging
- OS Page Fault Handling
- OS Instruction Backup
- OS Locking Pages in Memory
- OS Backing Store
- OS Separation of Policy & Mechanism
- OS Segmentation
- Operating System Input/Output
- Operating System Input/Output
- OS Input/Output Devices
- OS Device Controllers
- OS Memory-Mapped Input/Output
- OS Direct Memory Access DMA
- OS Input/Output Software Goals
- OS Programmed Input/Output
- OS Interrupt-Driven Input/Output
- OS Input/Output using DMA
- OS Input/Output Software Layers
- OS Disks
- OS Disk Hardware
- OS Disk Formatting
- OS Stable Storage
- OS Clocks
- OS Character-Oriented Terminals
- OS RS-232 Terminal Hardware
- OS Graphical User Interfaces
- OS Network Terminals
- OS Power Management
- OS File Systems
- OS Files
- OS File Naming
- OS File Structure
- OS File Types
- OS File Access
- OS File Attributes
- OS File Operations
- OS Memory-Mapped Files
- OS Directories
- OS Single-Level Directory System
- OS Two-Level Directory System
- OS Hierarchical Directory System
- OS Path Names
- OS Directory Operations
- OS File System Implementation
- OS File System Layout
- OS Disk Space Management
- Multimedia Operating System
- Multimedia Operating System
- OS Multimedia Files
- OS Audio Encoding
- OS Video Encoding
- OS Video Compression
- OS Multimedia Process Scheduling
- OS Multimedia File System Paradigm
- OS File Placement
- OS Caching
- OS Disk Scheduling
- OS Multiple Processor System
- OS Multiprocessors
- OS Multiprocessor Hardware
- OS Multiprocessor Synchronization
- OS Multiprocessor Scheduling
- OS Multicomputers
- OS Multicomputer Hardware
- Low-Level Communication Software
- User-Level Communication Software
- OS Remote Procedure Call
- OS Distributed Shared Memory
- OS Multicomputer Scheduling
- OS Load Balancing
- OS Distributed System
- OS Network Hardware
- OS Network Services and Protocols
- OS Document-Based Middleware
- OS File System-Based Middleware
- OS Shared Object-Based Middleware
- Operating System Security
- Operating System Security
- OS Threats
- OS Intruders
- OS Accidental Data Loss
- Basics of Cryptography
- Secret-Key Cryptography
- Public-Key Cryptography
- OS Digital Signatures
- OS User Authentication
- OS Trojan Horses
- OS Login Spoofing
- OS Logic Bombs
- OS Trap Doors
- OS Viruses
- OS AntiViruses
- OS Internet Worms
- Give Online Test
- All Test List
- Operating System Test
OS Backing Store
The easiest algorithm for allocating the page space on disk is to have a special area on the disk. Basically, this special area is empty when the system is booted and is represented as a single entry giving its origin and size in the memory.
When first process is started when a chunk of swap area the size of the first process is reserved and remaining area is reduced by that amount.
Since the new processes are started, they are assigned chunks of swap area equal in size to their core images. Their disk space is freed when they finishes. And the swap area is managed as a list of free chunks. Associated with each process is the disk address of its swap area are kept in the process table.
It becomes too simple to calculate the address to write a page just by adding the offset of page within virtual address space to start of the swap area.
But the swap area must be initialized before a process can start. One way is to copy the whole process image to swap area so that it can be brought in as needed. And the other way is to load the whole process in memory and let it be paged out as needed.
But generally processes can increase in size when it is started. Here the program text is usually fixed, and sometime the data area can grow and stack can always grow.
Therefore, it is better to swap the reserve separate swap areas for text, data and the stack, allow each of the area consist of multiple chunk on disk.
« Previous Tutorial Next Tutorial »
Like/Share Us on Facebook 😋